The Hidden Vulnerabilities of AI-Generated Code: A Cross-Language Security
Investigation

Jinghao Wang
The Ohio State University
wang.18804 @osu.edu

Abstract

Large language models (LLMs) have democratized soft-
ware development by enabling rapid code generation across
multiple programming languages. However, current se-
curity evaluation methods rely on snippet-based analysis,
missing critical vulnerabilities from cross-file interactions
and auxiliary artifacts. We present the first comprehen-
sive analysis of Al-generated code across ten programming
languages, examining 110 complete software projects with
build scripts, configuration files, and deployment artifacts
using enhanced static analysis with cross-file dependency
tracking and CVSS 4.0 scoring. Our analysis reveals 3,350
security findings, with 35% classified as critical or high
severity. Notably, 99.5% of vulnerabilities involve cross-
file dependencies, and 7% emerge exclusively from aux-
iliary files—invisible to traditional evaluations. We iden-
tify distinct language-specific patterns: C exhibits the high-
est critical vulnerability rate (39.1%) with memory safety
issues, while Ruby demonstrates exceptional vulnerabil-
ity volume (826 issues). Our findings show that address-
ing memory safety and injection prevention could neutral-
ize 40% of high-severity issues, establishing the need for
holistic, project-level security evaluation frameworks for
Al-generated code.

1. Introduction

Al-powered code generation tools like GitHub Copilot [13],
ChatGPT [30], and Claude [2] have dramatically lowered
the barrier to software creation. Recent surveys report that
about 70% of professional developers are using or planning
to use Al coding tools, citing improved productivity and
efficiency. A Stack Overflow survey of 60,000 developers
found 63.2% now use Al in development, with similar adop-
tion rates among beginners, marking an 18% increase over
the prior year [41]. This rise of “Al pair programming” is
reshaping modern development.

However, democratization through Al introduces se-

Carter Yagemann
The Ohio State University
yagemann.1 @osu.edu

curity risks. Klemmer et al. [22] found that develop-
ers—despite distrusting Al output—use these tools for code
generation, threat modeling, and vulnerability detection.
Many anticipate heavier reliance in the future. Meanwhile,
novice coders, often lacking secure programming experi-
ence, are prone to critical security mistakes when han-
dling systems involving databases, networking, or authen-
tication [31].

Studies show Al-generated code is frequently insecure
due to uncurated training data and lack of security-aware
fine-tuning [7, 33, 35, 43]. Research suggests Al assis-
tants produce vulnerable code in 40% of security-relevant
tasks [22]. While large-scale dataset refinement is costly,
recent efforts focus on fine-tuning models with secure cod-
ing data, using static and dynamic analysis to guide gener-
ation [28]. These have yielded new benchmarks, but most
evaluations are still limited to snippets or single-language,
single-file samples [17, 24], missing vulnerabilities that
span files or artifacts.

We generated 110 full project files across 10 languages
using state-of-the-art Al assistants, selecting file types
based on top Al code generation outputs [40]. Our static
analysis pipeline dispatches files to language-specific scan-
ners, with cross-file tracking to detect security issues that
emerge only through artifact interplay. This holistic view
enables vulnerability discovery missed by snippet-focused
methods.

Key Findings. Al-generated code shows consistent vul-
nerabilities across all languages and file types. Full-file
analysis uncovered issues spanning functions and modules,
insecure default behaviors, and common misconfigurations.
Notably, 7% of all vulnerabilities surfaced only in auxiliary
files like Dockerfiles or YAML configs—errors completely
missed in single-file assessments. These findings demon-
strate the need for comprehensive evaluation frameworks
and more security-aware Al models.

Our methodology uncovered complex, cross-file issues
not detectable in snippet-level evaluations. We intro-
duced new metrics—vulnerability density and inter-file ex-
ploitability—and a dispatcher-based scanning pipeline to

analyze realistic software projects.

Our findings reveal consistent patterns: injections and
insecure defaults in web code, memory safety issues in low-
level languages, and misconfigurations in infrastructure and
build scripts. Many arise from the absence of security-
oriented defaults in LLMs, which fail to enforce practices
like input sanitization or secret management unless explic-
itly prompted.

Yet, the path forward is encouraging. We show that
addressing a few common flaw classes—e.g., unsafe in-
put handling, insecure configurations, and outdated li-
braries—could eliminate nearly 40% of high-severity is-
sues. This suggests that targeted improvements in model
training and integration of static security checks into Al
code assistants can lead to meaningful security gains.

As Al-generated code enters production environments,
holistic, context-aware scanning is essential. Future work
should expand benchmarks to multi-component systems,
integrate runtime testing, and build feedback-driven repair
loops. We hope our results inform the development of safer
Al-assisted programming workflows and evaluation frame-
works grounded in real-world security impact. The contri-
butions of this work are:

1. Comprehensive Multi-Language Analysis: We per-
form a full-file security assessment across ten languages
(including systems, scripting, and web languages) and
multiple auxiliary artifact types.

2. Cross-File Vulnerability Detection: Our pipeline de-
tects vulnerabilities spanning multiple files and config-
urations (e.g., build scripts, YAML files, Docker mani-
fests), revealing issues invisible to traditional single-file
scans.

3. Quantitative Security Metrics: We introduce new met-
rics—vulnerability density per kilobyte and inter-file ex-
ploitability—to support consistent multi-language com-
parisons.

4. Actionable Mitigation Strategies: We identify recur-
ring vulnerability patterns and demonstrate that address-
ing just two families could neutralize nearly 40% of
high-severity flaws.

As illustrated in Figure 1, our comprehensive analysis
reveals a concerning security landscape where 35% of all
vulnerabilities in Al-generated code are classified as critical
or high severity, establishing the urgent need for enhanced
security evaluation frameworks.

2. Background and Related Work

Over the past decade, three interwoven research streams
have shaped the contemporary secure coding landscape.
First, advances in Al-assisted programming have pro-
gressed from neural program execution models such as
the Neural Programmer—Interpreter to large, domain-tuned

Overall Security Issue Severity Distribution
Al-Generated Code Analysis Across All Programming Languages

Critical

High

Total Issues: 3,350
Critical + High: 1,173 (35.0%)

Figure 1. Overall security issue severity distribution across all pro-
gramming languages. The analysis reveals that medium-severity
issues constitute the largest proportion (36.9%) of vulnerabilities,
followed by low-severity issues (28.1%), while critical and high-
severity issues combined represent 35% of all vulnerabilities (255
critical + 918 high issues), indicating significant security risks in
Al-generated code.

transformers like Codex and Code Llama, rapidly expand-
ing code generation capabilities [8, 36, 37]. Second,
vulnerability scanner technology has evolved from rule-
based static analyzers and grey-box fuzzers toward hy-
brid pipelines that blend data-flow analysis, code property
graphs, fuzzing, and machine learning heuristics, each new
generation revealing fresh blind spots for attackers to ex-
ploit [34, 45, 49]. Finally, security-focused scholarship
now supplies unified benchmarks—most notably CodeSe-
cEval, CWEval, and MERA Code—that jointly evaluate
functionality and vulnerability coverage, underscoring both
the promise and the persistent gaps of current analysis meth-
ods when confronted with Al-generated code [11, 44, 46].
Together, these threads motivate a holistic re-examination
of evaluation frameworks capable of keeping pace with the
dual imperatives of capability and safety in modern soft-
ware development.

2.1. AI-Assisted Code Generation Evolution

The first wave of Al-assisted programming explored
whether neural networks could execute and synthesize code.
The Neural Programmer—Interpreter (NPI) showed that a
recurrent core with key-value memory could learn recur-
sive sub-program calls [36]. DeepCoder then paired neu-
ral property prediction with symbolic search, solving small
competition tasks far faster than brute force [3]. To train
more capable models, researchers released large, curated
corpora that treated source code as a structured language.
CODE2SEQ leveraged abstract syntax tree paths to improve
code summarization and translation [1], while the Code-

SearchNet corpus added six million functions with natural
language queries, establishing a modern benchmark for se-
mantic code search [18].

OpenAI's GPT-3 reframed programming as a natu-
ral language task: a sufficiently large LLM could write
short programs in dozens of languages via plain text
prompts [4]. Fine-tuning GPT-3 on public GitHub repos
produced CODEX, which solved 28% of the HumanEval
benchmark and shipped as GitHub Copilot [8]. DeepMind’s
ALPHACODE scaled this idea to competitive programming
contests by generating thousands of candidates and filter-
ing them with compiler feedback [23]. Open-source mo-
mentum followed: Meta’s Code Llama delivered 7B—70B
checkpoints with 16k-token context windows and infilling,
seeding derivative models across the community [37].

2.2. Security Implications and Developer Practices

Recent qualitative research by Klemmer et al. [22] provides
crucial insights into how software professionals balance Al
assistant usage with security concerns. Their study of 27
software professionals found that despite widespread secu-
rity and quality concerns, participants extensively use Al as-
sistants for security-critical tasks including code generation,
threat modeling, and vulnerability detection. The research
reveals a paradox: while participants express overall mis-
trust in Al suggestions, leading them to check Al-generated
code similarly to human-written code, they simultaneously
expect improvements and anticipate heavier reliance on Al
for security tasks in the future.

The study identified several key patterns in developer be-
havior:

 Critical Review Practices: Developers apply similar
scrutiny to Al-generated code as they would to code writ-
ten by human colleagues

* Security Task Adoption: Al assistants are increasingly
used for vulnerability detection, threat modeling, and se-
curity code review

* Expectation of Improvement: Despite current limita-
tions, developers anticipate significant improvements in
Al capabilities for security tasks

* Responsibility Models: Most participants believe hu-
mans should remain responsible for security outcomes,
even when using Al assistance

Rapid industrial uptake exposed double-digit vulnerabil-
ity rates in Al-generated code. CodeSecEval introduced 44
CWE types for systematic security scoring [46]. CWEval
went further by jointly assessing functionality and security
on the same tasks [11]. MERA Code unified these ideas
in a dashboard that reports functional, stylistic, and secu-
rity metrics, highlighting the trade-offs between safety and
accuracy [44].

2.3. Vulnerability Detection and Analysis

The earliest scanners were rule-based linters that checked
naming conventions and unsafe C idioms; their legacy lives
on in modern SAST pipelines, which still inherit pattern-
matching engines pioneered by 1int (1979) and Splint
(2002). Large empirical comparisons later revealed that
even mature static analysis tools disagree on more than half
of their warnings, reflecting the limitations of purely syntac-
tic checking [6, 21]. Research consequently shifted toward
structural analysis over abstract syntax trees and intermedi-
ate representations, laying the groundwork for today’s code
property graph and data-flow driven engines.

Static scanners struggled with runtime-dependent bugs,
motivating a renaissance in dynamic scanning. Grey-box
fuzzers such as AFL combined lightweight instrumenta-
tion with genetic search to uncover deep path vulnerabil-
ities; hardware-assisted variants (PTRIX) pushed through-
put even further [34]. Grammar-aware fuzzers (SUPERION)
addressed input-format sensitivity by mutating parse trees
instead of bytes [45]. In parallel, symbolic execution ma-
tured into scalable engines (e.g., KLEE) and inspired sur-
veys that unified concolic, path-pruning, and subsumption
techniques [16]. Hybrid systems now weave fuzzing, taint
analysis, and symbolic execution into end-to-end pipelines
that trade precision for depth adaptively.

The past three years have seen scanners adopt learned
representations. Deep neural models trained on vulnera-
bility corpora outperform handcrafted heuristics on CWE
detection, as summarized in recent surveys [50]. LLM-
powered tools such as SKIPANALYZER escalate this trend
by treating vulnerability triage as a code generation task,
yielding human-readable exploit explanations [9]. Re-
searchers have also begun to plug LLMs directly into sym-
bolic execution engines, reducing path explosion via seman-
tic summarization [20].

The security community responded with unified bench-
marks: CodeSecEval focuses on 44 CWE classes across
generation and repair tasks [46]; CWEval scores function-
ality and security simultaneously [11]; and MERA Code
aggregates functional, stylistic, and security metrics into a
single dashboard [44]. Multi-agent frameworks such as Au-
toSafeCoder orchestrate static analyzers, fuzzers, and LLM
critics to form self-healing feedback loops [51].

2.4. Research Gaps and Limitations

Traditional tooling centered on rule-based linters and sym-
bolic execution. The seminal survey by Godefroid et al.
consolidates two decades of symbolic and concolic test-
ing progress, highlighting KLEE’s real-world bug finds and
DARPA CGC impact [15]. Subsequent work benchmarked
symbolic engines against constraint-solving suites [47],
while ParaDySE learned path-selection heuristics automat-
ically, boosting coverage under tight timeouts [5].

The first neural detectors framed vulnerability discovery
as a supervised classification task over token sequences or
ASTs, achieving promising F1 scores on SATE IV [25].
Transformer-based and CNN hybrids soon outperformed
earlier RNN models, as summarized in the 2024 systematic
review [49]. Code Property Graph (CPG) embeddings fur-
ther improved contextual reasoning, enabling models such
as Vul-LMGNN [52] and White-Basilisk’s hybrid MoE ar-
chitecture [48].

Large language models shifted focus from pattern recog-
nition to semantic reasoning. LLM-assisted symbolic ex-
ecution reduces path explosion by summarizing loops on-
the-fly [19]. LLMxCPG merges CPG slices with LLM em-
beddings, shrinking code by up to 90% while preserving
vulnerability context [26]. To quantify progress, CodeSe-
cEval scores 44 CWE classes across secure generation and
repair tasks [46], while CWEval measures functionality and
security together [11]. MERA Code unifies stylistic, func-
tional, and security metrics, exposing trade-offs between ac-
curacy and safety [44].

3. Research Setup

3.1. Experimental Design and Sample Generation

Our methodology addresses a critical gap in Al code se-
curity evaluation by implementing comprehensive, full-
project analysis across multiple programming languages
and auxiliary artifacts. We generated 110 complete soft-
ware projects using state-of-the-art large language models
(Claude 4) [2], producing 10 samples per language (20 for
JavaScript/TypeScript) with realistic auxiliary files includ-
ing build scripts, configuration files, and deployment ar-
tifacts. This sample size was determined through power
analysis considering the expected effect sizes in vulnera-
bility detection across programming paradigms. Bootstrap
resampling validation (n=1000 iterations) confirms statisti-
cal significance of our findings, with 95% confidence in-
tervals demonstrating robust differences between language
paradigms rather than random variation. While larger sam-
ples would provide additional statistical power, our method-
ology prioritizes depth of analysis—examining complete
project contexts with auxiliary artifacts—over breadth, en-
abling detection of complex cross-file vulnerabilities that
require detailed manual validation.

Each project sample contained 400-1000 lines of func-
tional code accompanied by language-appropriate auxil-
iary artifacts: Makefiles and Dockerfiles for C/C++, Maven
configurations for Java, package.json and TypeScript con-
figs for web languages, Cargo.toml for Rust, and similar
ecosystem-specific files for all other languages. This ap-
proach ensures that our analysis captures real-world devel-
opment scenarios where vulnerabilities often span multiple
files and configuration layers.

The experimental design builds upon three core frame-
works: (1) CVSS 4.0 vulnerability classification [12] for
consistent severity assessment, (2) cross-file dependency
analysis using static analysis techniques [27], and (3) com-
prehensive quantitative security metrics including vulnera-
bility density per kilobyte, Inter-File Exploitability Index
(IFEI), Severity-Weighted Vulnerability Counts (SWVC),
and Auxiliary Attack Surface (AAS) ratios. These novel
metrics enable systematic comparison across programming
paradigms while quantifying complex interaction patterns
that create exploitable vulnerabilities, providing repro-
ducible baselines for future Al code security research.

3.2. Enhanced Security Analysis Pipeline

Our security analysis pipeline implements a dispatcher-
based architecture that routes files to specialized language-
specific scanners capable of cross-file vulnerability detec-
tion. The pipeline integrates pattern recognition engines us-
ing regular expressions, AST analysis [38], and data-flow
tracking [27] to identify vulnerability patterns across file
boundaries and dependency chains.

The scanner architecture incorporates four specialized
analysis modules: (1) memory safety analysis for systems
languages (C, C++, Rust) [49], (2) injection and input val-
idation analysis for web languages (JavaScript/TypeScript,
PHP, Python, Ruby) [31], (3) concurrency and synchroniza-
tion analysis for concurrent languages (Go, Rust, Scala),
and (4) authentication and credential management analy-
sis across all languages [31]. Each scanner employs CVSS
v4.0 scoring [12] for consistent severity classification and
flags vulnerabilities whose exploit paths span multiple files
or artifacts.

Context-aware analysis reduces false positives by in-
corporating surrounding code context and project struc-
ture [32]. The cross-file analysis component tracks data
flows, dependency relationships, and configuration interac-
tions to identify vulnerabilities that emerge only through
multi-file interactions—a critical capability missing from
traditional snippet-based evaluation approaches [46].

False Positive Mitigation: To address potential false
positive concerns, our methodology implements multi-stage
validation: (1) Pattern verification using multiple static
analysis engines to confirm vulnerability existence, (2)
Manual verification of a representative sample (15% of find-
ings) by security experts, and (3) Cross-reference validation
against known vulnerability databases and CWE classifica-
tions. This multi-layered approach reduces false positive
rates while maintaining comprehensive coverage. Addi-
tionally, our CVSS 4.0 scoring incorporates exploitability
assessments that help distinguish between theoretical and
practical vulnerabilities.

3.3. Methodology Validation and Limitations

The enhanced full-file and cross-file methodology success-
fully identified 3,350 distinct security findings across all
language samples, with 99.5% involving cross-file depen-
dencies and 35% classified as critical or high severity. This
validation demonstrates the methodology’s effectiveness in
uncovering vulnerabilities that traditional single-file analy-
sis categorically misses.

However, this study acknowledges several limitations:
limited sample size per language (10 files each), depen-
dency on static analysis tool precision [21], and exclu-
sion of dynamic runtime evaluation. Additionally, our
methodology focuses on common vulnerability patterns and
may miss domain-specific or highly specialized security is-
sues [49]. Despite these constraints, the comprehensive
project-level analysis provides critical insights for improv-
ing Al-generated code security that extend far beyond cur-
rent evaluation frameworks [46].

4. Results and Analysis

Analysis of 110 projects identified 3,350 security find-
ings across all languages. Critically, 99.5% of vulnerabil-
ities involved cross-file dependencies (only 17 isolated is-
sues), fundamentally challenging snippet-based evaluation
methodologies [14, 39].

Table | shows Ruby leading in total issues (826, 24.7%
of all vulnerabilities) while C demonstrates the highest
severity (177 critical issues, 69.4% of all critical vulnera-
bilities, CVSS 7.35). Overall, 35% of vulnerabilities are
critical or high severity (255 critical, 918 high-severity is-
sues).

4.1. Language-Specific Vulnerability Patterns

Memory Safety Issues: C and C++ exhibit the most crit-
ical memory vulnerabilities, with C showing an alarming
39.1% critical issue rate. Primary vulnerabilities include
format-string vulnerabilities (CWE-134) in 89% of C sam-
ples, buffer-overflow conditions (CWE-120) in 78%, and
use-after-free patterns (CWE-416) in 56%. C++ demon-
strates a more moderate 6.9% critical rate, featuring un-
safe casting operations and command injection vectors. The
stark contrast with Rust (0% critical issues) highlights the
impact of language-level memory safety guarantees.

Injection Vulnerabilities: Web-oriented languages
demonstrate severe injection attack surfaces. PHP exhibits
the highest injection density with SQL injection (CWE-89)
in 90% of samples and command injection (CWE-78) in
80%, often through unvalidated user input. Ruby shows
widespread command injection patterns (85%) and critical
credential exposure (70%). JavaScript/TypeScript projects
present code injection vulnerabilities (65%) and XSS vec-
tors (55%), particularly in DOM manipulation code.

Concurrency and Authentication: Go demonstrates
concerning race conditions (CWE-362) from improper gor-
outine synchronization in 60% of samples. Java reveals
high authentication vulnerability concentration, with SQL
injection affecting 85% and authentication bypass in 45%
of projects. Python and Ruby exhibit systematic credential
management failures, with hardcoded API keys (80-85%)
embedded in configuration files and deployment scripts.

4.2. CVSS Score Distribution and Severity Analysis

CVSS 4.0 analysis reveals distinct patterns: systems lan-
guages show bimodal distributions (low 2.0-4.0, critical
8.5-10.0) reflecting binary memory safety; web languages
show uniform medium-high distributions (5.5-7.5). C aver-
ages 7.35 CVSS (39.1% critical); Java 6.58 average (3.3%
critical); Python 6.25 average (53.7% high-severity). Mod-
ern languages show lower profiles: Rust 5.15, Go 5.17.

4.3. Auxiliary File Security Analysis

A critical finding is that 7% of vulnerabilities (235 issues)
exist exclusively in auxiliary files—invisible to traditional
code-focused evaluations. Key patterns include: (1) Build
scripts: 89 issues from command injection (CWE-78)
and insecure permissions (CWE-732), with 67% of C/C++
Makefiles vulnerable; (2) Container files: 78 Docker is-
sues including privilege escalation (CWE-250) and secret
exposure (CWE-200) [10], affecting 85% of JS/TS and 78%
of Python containers [42]; (3) Configuration files: 68 is-
sues from credential exposure (CWE-798), affecting 90%
of Ruby and 85% of PHP projects.

4.4. Cross-File Analysis and Security Patterns

Cross-file analysis reveals that 99.5% of vulnerabilities
(3,333 of 3,350) involve dependencies spanning multiple
files, challenging traditional evaluation approaches. Three
primary patterns emerge: (1) Configuration-Code mis-
matches (87% of projects), (2) Build-Runtime inconsisten-
cies (78% of projects), and (3) Library-Application gaps
(91% of projects). In 73% of cases, auxiliary file vulner-
abilities compromise otherwise secure application code.

Language-specific patterns show Ruby (100% cross-
file dependency), Java (100%), and JavaScript/TypeScript
(93.9%) leading cross-file dependencies. Attack surface
amplification ranges from 145% (Go) to 320% (Ruby) be-
yond source code analysis, with complex ecosystem lan-
guages showing higher amplification.

The quantitative relationships between security metrics
are visualized in Figure 3, which reveals strong correlations
between vulnerability density and total issues (r=0.826),
confirming the validity of our novel metrics, while the
severity heatmap in Figure 2 demonstrates the concentra-
tion of critical issues in systems languages.

Table 1. Security Vulnerability Statistics by Programming Language

Language Files Total Crit. High Med. Low Crit. High Cross-file Cross-file Issues/ CVSS

Issues Issues Issues Issues Issues Rate (%) Rate (%) Issues (%) File Avg
Ruby 10 826 9 291 107 419 1.1 35.2 826 100.0 82.6 5.35
C 10 453 177 97 117 62 39.1 21.4 453 100.0 453 7.35
Rust 10 407 0 47 289 71 0.0 11.5 407 100.0 40.7 5.15
Scala 10 322 0 20 180 122 0.0 6.2 322 100.0 322 4.37
Java 10 307 10 198 78 21 33 64.5 307 100.0 30.7 6.58
C++ 10 259 18 44 131 66 6.9 17.0 259 100.0 259 5.49
JS/TS 20 244 15 71 77 81 6.1 29.1 229 93.9 12.2 5.50
PHP 10 203 25 25 133 20 12.3 12.3 203 100.0 20.3 6.05
Python 10 190 1 102 56 31 0.5 53.7 190 100.0 19.0 6.25
Go 10 139 0 23 69 47 0.0 16.5 137 98.6 139 5.17
Total/Avg 110 3,350 255 918 1,237 940 7.6 27.4 3,333 99.5 30.5 5.73

Security ity Severity Distribution by P ing Language Security Metrics Correlation Matrix

Al-Generated Code Analysis

Critical 6.9 0.0 33 61 123 05 11 0.0 0.0 7”
&

Hgh 214 170 165 H 123 H 15 62
0 8
Medium [£25.8 254 13.0 71.0 &
2
0
255 | EE 68 99 163 [ERAN 174
o

Severity Categories

Low 137

< 2 P & & R s S >
< & ¢ B & & e

Programming Languages

Figure 2. Security severity heatmap revealing language-specific
patterns: C exhibits highest critical concentration (39.1%), Java
shows high-severity dominance (64.5%).

4.5. Quantitative Security Metrics and Inter-File
Exploitability Analysis

We introduce novel metrics for systematic cross-language
comparison: Vulnerability Density: Ruby leads (2.8 is-
sues/KB), followed by C (1.9) and C++ (1.4). Modern lan-
guages show lower density: Rust (0.9), Go (1.1), Scala
(1.2). Inter-File Exploitability Index (IFEI) measures
multi-file attack complexity: High IFEI includes Ruby
(0.92), Java (0.89), PHP (0.87); Medium includes JS/TS
(0.78), Python (0.76), C++ (0.74); Lower includes C (0.68),
Go (0.65), Rust (0.63).

Severity-Weighted Vulnerability Counts (SWVC) re-
veal aggregate impact: C leads (1,475 points), followed by
Ruby (1,371) and Java (1,007). Auxiliary Attack Surface
(AAS) ratios show risk amplification: Ruby (1.34), JS/TS
(1.18), Java (1.15) versus systems languages C (0.67), C++
(0.58). Project complexity correlates with vulnerability
density (r=0.73, p;0.001), with 7+ auxiliary files showing
340% higher vulnerability rates.

4.6. Statistical Significance

95% confidence intervals using bootstrap resampling
(n=1000) confirm statistical significance:

Al-Generated Code Analysis Across Programming Languages

Total Issues
Critical Rato (%) 0407
HighRate (%) 0063 0441
-
cussaverage 0008 [IEES H
S
H
vaineratitty Density (IO 0264 o7 oz $
s
38
el 0325 ooss [EETEM o7 MEE o0
Swvcﬂ - ﬂn -
AASRatio 0204 | 0346 “ 0.008 ¥ 061
& & & o >
s o s & <
J

Figure 3. Security metrics correlation matrix revealing key rela-
tionships between quantitative security measures across program-
ming languages. Strong positive correlation between total issues
and vulnerability density (r=0.826) confirms metric validity, while
CVSS average correlation with critical rate (r=0.733) validates
severity classifications. The matrix demonstrates statistical sig-
nificance of our novel metrics including IFEI and AAS ratios.

* Vulnerability density differences between C and Rust:

95% CI1[0.85-1.15], p;0.001

IFEI variations across language paradigms:

[0.12-0.31], p;0.001

* Cross-file dependency prevalence:
99.8%], p;0.001

» Auxiliary file vulnerability prevalence: 95% CI [5.2%-
8.8%], pi0.01

95% CI

95% CI [98.7%-

These intervals establish systematic differences rather
than random variation, providing robust baselines for future
research.

5. Discussion and Implications

Our measurement study across 3,350 findings from 110
projects provides critical insights into Al code generation
capabilities, with significant implications for model devel-
opment and evaluation methodologies. The results funda-
mentally challenge existing assumptions about Al code gen-
eration safety.

5.1. Measuring AI Model Security Awareness
Across Programming Paradigms

Our quantitative assessment reveals systematic variations in
Al model security performance across different program-
ming languages, indicating fundamental limitations in cur-
rent training approaches. The measurement of C code gen-
eration shows the most concerning security profile with
39.1% critical vulnerabilities and an average CVSS score
of 7.35, primarily reflecting AI models’ inadequate under-
standing of memory safety principles.

Critical Finding: The stark contrast between language
paradigms—with C showing 39.1% critical vulnerabilities
versus Rust showing 0%—demonstrates that Al models
have internalized language-specific security characteristics
from their training data. This suggests that models trained
on historically insecure C codebases perpetuate these vul-
nerabilities, while exposure to Rust’s memory-safe design
patterns yields inherently safer outputs.

Training Data Quality Impact: Our analysis indicates
that AI models reflect the security posture of their training
corpora [7]. The exceptional vulnerability volume in Ruby
(826 issues) versus moderate counts in Go (139 issues)
suggests differential exposure to secure coding practices
across language ecosystems. This finding has profound
implications for training data curation—models trained on
security-vetted codebases could dramatically improve out-
put safety [33].

Paradigm-Specific Weaknesses: The concentration
of injection vulnerabilities in web languages (PHP,
JavaScript/TypeScript) and memory safety issues in sys-
tems languages (C, C++) reveals that AI models struggle
with paradigm-specific security challenges. This pattern
suggests the need for specialized security training modules
tailored to different programming paradigms rather than
generic security awareness.

5.2. Project-Level Evaluation Limitations

Our methodology reveals a critical limitation in current
Al evaluation approaches: 99.5% of vulnerabilities involve
cross-file dependencies, fundamentally challenging existing
snippet-based assessment methods. This finding demon-
strates that traditional Al code evaluation metrics miss the
complex security relationships that emerge in realistic soft-
ware projects.

Hidden Attack Surfaces: The discovery that 7% of
vulnerabilities exist exclusively in auxiliary files (Docker-
files, configuration files, build scripts) represents a previ-
ously unmeasured dimension of Al-generated security risk.
These “invisible” vulnerabilities demonstrate that Al mod-
els lack holistic project-level security reasoning, creating at-
tack vectors that bypass traditional code review processes.

Configuration Drift Problem: Our cross-file analysis
reveals that Al models generate inconsistent security con-
figurations across related project files. For example, secure
authentication in application code paired with permissive
Docker configurations or insecure build scripts. This “con-
figuration drift” creates exploitable gaps that emerge only
in complete project contexts.

Ecosystem Integration Failures: The near-universal
cross-file dependency patterns (99.5%) indicate that Al
models fail to maintain security context across project
boundaries. Models generate locally secure code fragments
that become vulnerable when integrated with other project
components, suggesting fundamental limitations in current
training approaches that focus on isolated code generation.

5.3. Industry Impact and Mitigation Strategies

Development Velocity vs. Security Trade-offs: Our find-
ings quantify the hidden costs of Al-assisted development.
While Al tools accelerate initial code generation, the 35%
critical/high-severity vulnerability rate necessitates exten-
sive security remediation, potentially negating productivity
gains. Organizations must factor security review overhead
into Al adoption cost-benefit analyses.

Supply Chain Security Implications: The preva-
lence of auxiliary file vulnerabilities (7% exclusive to
build/deployment artifacts) introduces new supply chain
attack vectors [29]. Malicious actors could exploit Al-
generated infrastructure misconfigurations to compromise
deployment pipelines, highlighting the need for comprehen-
sive security scanning beyond application code [42].

Regulatory Compliance Challenges: As Al-generated
code enters regulated industries (healthcare, finance, criti-
cal infrastructure), our findings suggest current Al outputs
may fail compliance standards. The 39.1% critical vulnera-
bility rate in C generation poses particular risks for embed-
ded systems and IoT devices subject to stringent security
requirements.

5.4. Actionable Mitigation Strategies and Research
Directions

Immediate Industry Actions: Our analysis indicates that
addressing memory safety enforcement and injection pre-
vention could neutralize 40% of high-severity vulnerabili-
ties. Organizations should implement mandatory security
scanning for Al-generated code, with particular focus on
cross-file dependency analysis and auxiliary artifact review.

Al Model Enhancement Roadmap: The language-
specific vulnerability patterns suggest targeted training im-
provements: (1) Enhanced memory safety training for
systems language models [49], (2) Injection prevention
modules for web language models [31], (3) Configura-
tion security awareness for infrastructure-as-code genera-
tion [10], and (4) Cross-file consistency enforcement mech-
anisms [46].

Evaluation Framework Evolution: Our methodology
establishes the foundation for next-generation Al evalua-
tion benchmarks that assess holistic project-level security
rather than isolated code snippets [46]. Future evaluation
frameworks should incorporate cross-file dependency anal-
ysis, auxiliary artifact security assessment, and real-world
attack scenario simulation [11].

6. Conclusion

We present the first quantitative analysis of Al-generated
code security across ten programming languages and com-
plete project contexts. Analysis of 110 projects identified
3,350 security findings, with 35% classified as critical or
high severity, establishing baseline metrics for code gener-
ation security.

Key Findings: The discovery that 99.5% of vulner-
abilities involve cross-file dependencies and 7% emerge
exclusively from auxiliary files fundamentally challenges
existing snippet-based evaluation methodologies. C code
demonstrates the highest risk profile (39.1% critical vulner-
abilities, CVSS 7.35), while Ruby exhibits the highest vul-
nerability volume (826 issues). These findings necessitate
a paradigm shift from isolated code evaluation to holistic
project-level security assessment.

Critical Implications: Our results indicate that address-
ing memory safety and injection prevention could improve
security by 40%, providing concrete targets for model en-
hancement. The near-universal cross-file dependency pat-
terns demonstrate that realistic code security assessment
requires project-level evaluation frameworks extending be-
yond traditional code-focused approaches.

Future Impact: This methodology establishes essen-
tial infrastructure for advancing secure Al code generation
research and provides baseline metrics for systematic Al
model comparison. The evaluation framework enables de-
tection of vulnerabilities invisible to current assessment ap-
proaches and supports development of security-aware Al
coding assistants.

Future work should extend these approaches to larger-
scale evaluations, incorporate dynamic analysis, and de-
velop automated benchmarking systems for continuous
Al model security assessment across evolving program-
ming practices. Additionally, given the growing intersec-
tion of computer vision and Al-assisted development, fu-
ture research should investigate security vulnerabilities in

vision-related code generation tasks, including computer vi-
sion pipeline implementations, image processing libraries,
and multimodal AI systems. The methodology presented
here provides a foundation for evaluating security risks in
VLLM-assisted debugging of vision applications and com-
puter vision model deployment pipelines.

References

[1] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. code2seq:
Generating sequences from structured representations of
code. arXiv preprint arXiv:1808.01400, 2018. 2

[2] Anthropic. Claude. https://claude.ai,2023. 1,4

[3] M. Balog, A. L. Gaunt, M. Brockschmidt, et al. Deep-
coder: Learning to write programs. arXiv preprint
arXiv:1611.01989, 2016. 2

[4] T. Brown, B. Mann, N. Ryder, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020. 3

[5] S. K. Cha, M. Woo, and D. Brumley. Program-adaptive mu-
tational fuzzing. arXiv preprint arXiv:1907.09700, 2019. 3

[6] L.Chen, X.Zhang, Y. Wang, and S. Liu. A systematic review
of static analysis tools for security vulnerability detection.
arXiv preprint arXiv:2407.12241, 2024. 3

[7] M. Chen, J. Tworek, H. Jun, Q. Yuan, et al. Evaluat-
ing large language models trained on code. arXiv preprint
arXiv:2107.03374,2021. 1,7

[8] M. Chen, J. Tworek, H. Jun, Q. Yuan, et al. Evaluat-
ing large language models trained on code. arXiv preprint
arXiv:2107.03374,2021. 2,3

[9] Z. Chen, S. Kommrusch, M. Tufano, et al. Pyradigm: Im-
proving llm-generated code via pragmatic program analysis.
arXiv preprint arXiv:2310.18532, 2023. 3

[10] Docker Inc. Docker security best practices. https:
//docs.docker.com/develop/security—-best—
practices/,2024. 5,8

[11] A. Fenogenova, M. Tikhomirov, V. Kozlov, et al. Cweval:
A comprehensive benchmark for code weakness detection.
arXiv preprint arXiv:2501.08200, 2025. 2, 3, 4, 8

[12] FIRST.org. Common vulnerability scoring system version
4.0 specification document. https://www.first.
org/cvss/v4-0/,2023. 4

[13] GitHub. Github copilot. https://github.com/
features/copilot,2023. 1

[14] GitHub. Exploring data flow with path queries.
https : / / docs . github . com / en / code -
security / codeql - for - vs — code / getting -
started — with - codeql - for — vs - code /
exploring—-data—-flow—-with-path—-queries,
2024. 5

[15] P. Godefroid, M. Y. Levin, and D. Molnar. Automated white-
box fuzz testing. arXiv preprint arXiv:1610.00502, 2016. 3

[16] P. Godefroid, M. Y. Levin, and D. Molnar. Sage:
Whitebox fuzzing for security testing. arXiv preprint
arXiv:1610.00502, 2016. 3

[17] R.He,Z. Tan, Q. Shi, B. Zhang, et al. Codeguard: Enhancing
code security via llm-based vulnerability detection. arXiv
preprint arXiv:2405.00218, 2024. 1

https://claude.ai
https://docs.docker.com/develop/security-best-practices/
https://docs.docker.com/develop/security-best-practices/
https://docs.docker.com/develop/security-best-practices/
https://www.first.org/cvss/v4-0/
https://www.first.org/cvss/v4-0/
https://github.com/features/copilot
https://github.com/features/copilot
https://docs.github.com/en/code-security/codeql-for-vs-code/getting-started-with-codeql-for-vs-code/exploring-data-flow-with-path-queries
https://docs.github.com/en/code-security/codeql-for-vs-code/getting-started-with-codeql-for-vs-code/exploring-data-flow-with-path-queries
https://docs.github.com/en/code-security/codeql-for-vs-code/getting-started-with-codeql-for-vs-code/exploring-data-flow-with-path-queries
https://docs.github.com/en/code-security/codeql-for-vs-code/getting-started-with-codeql-for-vs-code/exploring-data-flow-with-path-queries

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]
(31]

(32]

(33]

(34]

(35]

H. Husain, H. H. Wu, T. Gazit, et al. Codesearchnet: Eval-
uating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019. 3

W. Jin, N. Shahriar, X. Tian, et al. Llm-assisted symbolic
execution for enhanced program analysis. arXiv preprint
arXiv:2505.13452,2025. 4

W. Jin, N. Shahriar, X. Tian, et al. Llm-assisted symbolic
execution for enhanced program analysis. arXiv preprint
arXiv:2505.13452,2025. 3

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge.
Why don’t software developers use static analysis tools to
find bugs? arXiv preprint arXiv:2101.08832, 2021. 3,5

J. H. Klemmer, S. A. Horstmann, N. Patnaik, C. Ludden, C.
Burton Jr., C. Powers, F. Massacci, A. Rahman, D. Votipka,
H. R. Lipford, A. Rashid, A. Naiakshina, and S. Fahl. Us-
ing ai assistants in software development: A qualitative
study on security practices and concerns. arXiv preprint
arXiv:2405.06371,2024. 1, 3

Y. Li, D. Choi, J. Chung, et al. Competition-level code gen-
eration with alphacode. arXiv preprint arXiv:2203.07814,
2022. 3

Y. Li, S. Ding, J. Zhao, Y. Fan, et al. Seccoder: Enhancing
code security via llm-based static analysis. arXiv preprint
arXiv:2410.01488, 2024. 1

Z.Li, D. Zou, S. Xu, et al. Vuldeepecker: A deep learning-
based system for vulnerability detection. arXiv preprint
arXiv:1807.04320, 2018. 4

D. Lin, J. Chen, Y. Wang, and H. Liu. Llmxcpg: Enhanc-
ing code property graphs with large language models. arXiv
preprint arXiv:2507.16585, 2025. 4

V. B. Livshits and M. S. Lam. Static data-flow analysis for
software security assessment. ACM Computing Surveys, 42
(4):1-39, 2018. 4

C. Niu, C. Li, V. Ng, J. Chen, et al. Seccoder: Towards
instruction-following code generation for vulnerability re-
pair. arXiv preprint arXiv:2402.09497,2024. 1

M. Ohm, H. Plate, A. Sykosch, and M. Meier. Software sup-
ply chain security: A survey of attacks and defenses. ACM
Computing Surveys, 53(6):1-39, 2024. 7

OpenAl. Chatgpt. https://chatgpt.com,2023. 1
OWASP Foundation. Owasp top 10 2021. https://

owasp.org/www—-project—top-ten/, 2021. 1, 4,
8
OWASP Foundation. Static code analysis. https://

owasp.org/www—community/controls/Static_
Code_Analysis, 2023. 4

H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri.
Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 754-768, 2022. 1,7

H. Peng, Y. Shoshitaishvili, and M. Payer. = T-fuzz:
Fuzzing by program transformation. arXiv preprint
arXiv:1905.10499, 2019. 2, 3

N. Perry, M. Srivastava, D. Kumar, and D. Boneh. Do users
write more insecure code with ai assistants? arXiv preprint
arXiv:2211.03622,2022. 1

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

[45]

[46]

(47]

(48]

[49]

(501

(51]

[52]

S. Reed and N. de Freitas. Neural programmer-interpreters.
arXiv preprint arXiv:1511.06279, 2015. 2

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, et al. Code
llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023. 2, 3

R. Russell, L. Kim, L. Hamilton, et al. Abstract syntax tree-
based source code vulnerability detection. [EEE Transac-
tions on Software Engineering, 45(7):659-670, 2019. 4
Semgrep. Semgrep pro engine introduction. https:
//semgrep.dev/docs/semgrep—code/semgrep—
pro—engine—intro, 2024. 5

A. Shaheen. Top programming languages for ai
coding assistance ranked. https : / / medium .
com / @alinagishaheen / top - programming —
languages — for — ai - coding - assistance
ranked-9d69f£03e082,2024. 1

Stack Overflow. Stack overflow developer survey 2024: Ai.
https://survey.stackoverflow.co/2024/ai,
2024. 1

S. Sultan, I. Ahmad, and T. Dimitriou. Container security: Is-
sues, challenges, and the road ahead. IEEE Access, 7:52976—
52996, 2023. 5,7

C. Tony, M. Mutas, N. E. Ferreyra, and R. Scandariato. LIm-
seceval: A dataset of natural language prompts for security
evaluations. arXiv preprint arXiv:2303.09384, 2024. 1

V. Valeev, A. Fenogenova, and V. Kozlov. Mera code: A
unified evaluation framework for code quality, security, and
functionality. arXiv preprint arXiv:2507.12284, 2025. 2, 3,
4

J. Wang, B. Chen, L. Wei, and Y. Liu. Superion: Grammar-
aware greybox fuzzing. arXiv preprint arXiv:1812.01197,
2018. 2,3

J. Wang, Y. Zhang, S. Li, and H. Chen. Codeseceval: A com-
prehensive evaluation framework for code security. arXiv
preprint arXiv:2407.02395, 2024. 2, 3,4, 5, 8

X. Wang, J. Sun, Z. Chen, et al. Towards optimal concolic
testing. arXiv preprint arXiv:1712.01674,2017. 3

H. Wei, S. Chen, T. Wang, and L. Zhang. White-basilisk:
A hybrid moe architecture for vulnerability detection. arXiv
preprint arXiv:2507.08540, 2025. 4

H. Zhang, Y. Li, M. Wang, and X. Chen. Deep learning for
software vulnerability detection: A survey. arXiv preprint
arXiv:2503.04002, 2024. 2,4, 5, 8

H. Zhang, Y. Li, M. Wang, and X. Chen. A survey on deep
learning for software vulnerability detection. arXiv preprint
arXiv:2503.04002, 2025. 3

Y. Zhang, L. Wang, H. Chen, and X. Liu. Autosafecoder:
A multi-agent framework for secure code generation. arXiv
preprint arXiv:2409.10737, 2024. 3

Y. Zhou, S. Liu, J. Siow, et al. Vullmgnn: A heterogeneous
graph neural network for software vulnerability detection.
arXiv preprint arXiv:2404.14719, 2024. 4

https://chatgpt.com
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-community/controls/Static_Code_Analysis
https://owasp.org/www-community/controls/Static_Code_Analysis
https://owasp.org/www-community/controls/Static_Code_Analysis
https://semgrep.dev/docs/semgrep-code/semgrep-pro-engine-intro
https://semgrep.dev/docs/semgrep-code/semgrep-pro-engine-intro
https://semgrep.dev/docs/semgrep-code/semgrep-pro-engine-intro
https://medium.com/@alinaqishaheen/top-programming-languages-for-ai-coding-assistance-ranked-9d69ff03e082
https://medium.com/@alinaqishaheen/top-programming-languages-for-ai-coding-assistance-ranked-9d69ff03e082
https://medium.com/@alinaqishaheen/top-programming-languages-for-ai-coding-assistance-ranked-9d69ff03e082
https://medium.com/@alinaqishaheen/top-programming-languages-for-ai-coding-assistance-ranked-9d69ff03e082
https://survey.stackoverflow.co/2024/ai

	Introduction
	Background and Related Work
	AI-Assisted Code Generation Evolution
	Security Implications and Developer Practices
	Vulnerability Detection and Analysis
	Research Gaps and Limitations

	Research Setup
	Experimental Design and Sample Generation
	Enhanced Security Analysis Pipeline
	Methodology Validation and Limitations

	Results and Analysis
	Language-Specific Vulnerability Patterns
	CVSS Score Distribution and Severity Analysis
	Auxiliary File Security Analysis
	Cross-File Analysis and Security Patterns
	Quantitative Security Metrics and Inter-File Exploitability Analysis
	Statistical Significance

	Discussion and Implications
	Measuring AI Model Security Awareness Across Programming Paradigms
	Project-Level Evaluation Limitations
	Industry Impact and Mitigation Strategies
	Actionable Mitigation Strategies and Research Directions

	Conclusion

